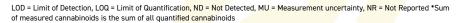


POTENCY

RECEIVED: 08/25/2022


French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128 Name: Type: ID: Batch ID:

METRC Tag:

pomegranate D9 Ingestible 220802223.18180 WIP074001 1A4000D00039211000002324 REPORTED: 08/29/2022

TESTED: 08/25/2022

ANALYTE	LOD	LOQ	MU	AMOUNT	AMOUNT	LABEL	STATUS
	%	%	mg/unit	%	mg/u <mark>nit</mark>	mg/unit	
THCa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
D9-THC	0.0010	0.002	0.173	0.173	1.73	-	TESTED
D8-THC	0.0010	0.002	0.010	0.007	0.1	-	TESTED
CBDa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBD	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBDVa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBDV	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBNa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBN	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBGa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBG	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBCa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBC	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
D9-THCVa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>- /</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>- /</th><th>TESTED</th></lod<>	- /	TESTED
D9-THCV	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
Sum	of Measured	d Cannabino	ids*	0.180	1.830		

Unit: 1 gram | Units Per Package:1

Analyte	Total*
Total THC	1.73 mg/unit
Total CBD	<lod< th=""></lod<>
Total CBG	<lod< th=""></lod<>
Total CBDV	<lod< th=""></lod<>
CBN	<lod< th=""></lod<>
THCV	<lod< th=""></lod<>
CBC	<lod< th=""></lod<>

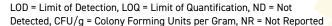
^{*}Total is the sum of the neutral (active) cannabinoid and the completely converted acidic cannabinoid

NOTES AND INTERPRETATIONS

Analyzed via AAM-001 using Agilent 1220 HPLC-DAD. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None. Delta-8 THC not included in total THC calculation.

Results Approved By: Luke Mason, MS Lab Director

MICROBIAL CONTAMINANT



RECEIVED: 08/25/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128 Name: Type: ID: Batch ID: METRC Tag: pomegranate D9 Ingestible 220802223.18180 WIP074001 1A4000D00039211000002324 REPORTED: 08/29/2022

TESTED: 0	8/25/	'2022
-----------	-------	-------

ANALYTE	LOQ	LIMIT	AMOUNT	STATUS
	CFU/g	CFU/g	CFU/g	
STEC	1	1	Absent	Pass
Salmonella	1	1	Absent	Pass
Aspergillus	1	1	Absent	Pass
Yeast & Mold	100	10000	ND	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-003 & AAM-007. Sample was analyzed as received. Deviations from SOP: None.

Results Analyzed By: Colleen Rafferty Associate Microbiologist

Results Approved By: Hector Caldera Supervisory Analyst

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St.

Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Brevard, NC 28712

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 **Lab Batch Date:** 2021-12-29 **Completion Date:** 2021-12-30

Initial Gross Weight: 48.972 g

Heavy Metals

Specimen Weight: 246.270 mg

Passed (ICP-MS)

Dilution Factor: 2.000

H

Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	
Arsenic (As)	100	1500	<l0q< th=""><th>Cadmium (Cd)</th><th>100</th><th>500</th><th><loq< th=""><th></th></loq<></th></l0q<>	Cadmium (Cd)	100	500	<loq< th=""><th></th></loq<>	
Lead (Pb)	100	500	<loq< th=""><th>Mercury (Hg)</th><th>100</th><th>3000</th><th><l0q< th=""><th></th></l0q<></th></loq<>	Mercury (Hg)	100	3000	<l0q< th=""><th></th></l0q<>	

Xueli Gao

Lab Director/Principal Scientist Aixia Sun

Ph.D., DABT

Lab Toxicologist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St. Brevard, NC 28712

Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 Lab Batch Date: 2021-12-29 Completion Date: 2021-12-30

Initial Gross Weight: 48.972 g

Passed (LCMS/GCMS)

Pesticides FL V4

Specimen Weight: 193.700 mg

Dilution Factor. 7.744							
Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)
Abamectin	28.23	300	<l0q< td=""><td>Acephate</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Acephate	30	3000	<l0q< td=""></l0q<>
Acequinocyl	48	2000	<loq< td=""><td>Acetamiprid</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Acetamiprid	30	3000	<loq< td=""></loq<>
Aldicarb	30	100	<loq< td=""><td>Azoxystrobin</td><td>10</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Azoxystrobin	10	3000	<loq< td=""></loq<>
Bifenazate	30	3000	<l0q< td=""><td>Bifenthrin</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></l0q<>	Bifenthrin	30	500	<loq< td=""></loq<>
Boscalid	10	3000	<loq< td=""><td>Captan</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Captan	30	3000	<loq< td=""></loq<>
Carbaryl	10	500	<l0q< td=""><td>Carbofuran</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>	Carbofuran	10	100	<l0q< td=""></l0q<>
Chlorantraniliprole	10	3000	<l0q< td=""><td>Chlordane</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>	Chlordane	10	100	<l0q< td=""></l0q<>
Chlorfenapyr	30	100	<l0q< td=""><td>Chlormequat Chloride</td><td>10</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Chlormequat Chloride	10	3000	<l0q< td=""></l0q<>
Chlorpyrifos	30	100	<loq< td=""><td>Clofentezine</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></loq<>	Clofentezine	30	500	<l0q< td=""></l0q<>
Coumaphos	48	100	<loq< td=""><td>Cyfluthrin</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></loq<>	Cyfluthrin	30	1000	<loq< td=""></loq<>
Cypermethrin	30	1000	<loq< td=""><td>Daminozide</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Daminozide	30	100	<loq< td=""></loq<>
Diazinon	30	200	<loq< td=""><td>Dichlorvos</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Dichlorvos	30	100	<loq< td=""></loq<>
Dimethoate	30	100	<loq< td=""><td>Dimethomorph</td><td>48</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Dimethomorph	48	3000	<l0q< td=""></l0q<>
Ethoprophos	30	100	<loq< td=""><td>Etofenprox</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></loq<>	Etofenprox	30	100	<l0q< td=""></l0q<>
Etoxazole	30	1500	<loq< td=""><td>Fenhexamid</td><td>10</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Fenhexamid	10	3000	<l0q< td=""></l0q<>
Fenoxycarb	30	100	<l0q< td=""><td>Fenpyroximate</td><td>30</td><td>2000</td><td><l0q< td=""></l0q<></td></l0q<>	Fenpyroximate	30	2000	<l0q< td=""></l0q<>
Fipronil	30	100	<loq< td=""><td>Flonicamid</td><td>30</td><td>2000</td><td><l0q< td=""></l0q<></td></loq<>	Flonicamid	30	2000	<l0q< td=""></l0q<>
Fludioxonil	48	3000	<loq< td=""><td>Hexythiazox</td><td>30</td><td>2000</td><td><l0q< td=""></l0q<></td></loq<>	Hexythiazox	30	2000	<l0q< td=""></l0q<>
Imazalil	30	100	<loq< td=""><td>Imidacloprid</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Imidacloprid	30	3000	<l0q< td=""></l0q<>
Kresoxim Methyl	30	1000	<loq< td=""><td>Malathion</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Malathion	30	2000	<loq< td=""></loq<>
Metalaxyl	10	3000	<loq< td=""><td>Methiocarb</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Methiocarb	30	100	<loq< td=""></loq<>
Methomyl	30	100	<loq< td=""><td>methyl-Parathion</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></loq<>	methyl-Parathion	10	100	<l0q< td=""></l0q<>
Mevinphos	10	100	<l0q< td=""><td>Myclobutanil</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Myclobutanil	30	3000	<l0q< td=""></l0q<>
Naled	30	500	<l0q< td=""><td>Oxamyl</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></l0q<>	Oxamyl	30	500	<l0q< td=""></l0q<>
Paclobutrazol	30	100	<loq< td=""><td>Pentachloronitrobenzene</td><td>10</td><td>200</td><td><l0q< td=""></l0q<></td></loq<>	Pentachloronitrobenzene	10	200	<l0q< td=""></l0q<>
Permethrin	30	1000	<loq< td=""><td>Phosmet</td><td>30</td><td>200</td><td><l0q< td=""></l0q<></td></loq<>	Phosmet	30	200	<l0q< td=""></l0q<>
Piperonylbutoxide	30	3000	<loq< td=""><td>Prallethrin</td><td>30</td><td>400</td><td><l0q< td=""></l0q<></td></loq<>	Prallethrin	30	400	<l0q< td=""></l0q<>
Propiconazole	30	1000	<loq< td=""><td>Propoxur</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Propoxur	30	100	<loq< td=""></loq<>
Pyrethrins	30	1000	<loq< td=""><td>Pyridaben</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Pyridaben	30	3000	<l0q< td=""></l0q<>
Spinetoram	10	3000	<loq< td=""><td>Spino sad</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Spino sad	30	3000	<l0q< td=""></l0q<>
Spiromesifen	30	3000	<l0q< td=""><td>Spirotetramat</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Spirotetramat	30	3000	<l0q< td=""></l0q<>
Spiroxamine	30	100	<l0q< td=""><td>Tebuconazole</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></l0q<>	Tebuconazole	30	1000	<loq< td=""></loq<>
Thiacloprid	30	100	<l0q< td=""><td>Thiamethoxam</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></l0q<>	Thiamethoxam	30	1000	<loq< td=""></loq<>
Trifloxystrobin	30	3000	<l0q< td=""><td></td><td></td><td></td><td></td></l0q<>				

Xueli Gao Ph.D., DABT Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St. Brevard, NC 28712 Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 Lab Batch Date: 2021-12-29 Completion Date: 2021-12-30

Initial Gross Weight: 48.972 g

Residual Solvents - FL (CBD)

Specimen Weight: 113.400 mg

Passed (GCMS)

LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
0.16	8	<l0q< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><loq< td=""></loq<></td></l0q<>	1,2-Dichloroethane	0.04	5	<loq< td=""></loq<>
2.08	5000	<loq< td=""><td>Acetonitrile</td><td>1.17</td><td>410</td><td><loq< td=""></loq<></td></loq<>	Acetonitrile	1.17	410	<loq< td=""></loq<>
0.02	2	<loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Butanes	2.5	2000	<loq< td=""></loq<>
0.04	60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td>Passed</td></loq<>	Ethanol	2.78	5000	Passed
1.11	5000	<loq< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><loq< td=""></loq<></td></loq<>	Ethyl Ether	1.39	5000	<loq< td=""></loq<>
0.1	5	<l0q< td=""><td>Heptane</td><td>1.39</td><td>5000</td><td><loq< td=""></loq<></td></l0q<>	Heptane	1.39	5000	<loq< td=""></loq<>
1.17	290	<l0q< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""></loq<></td></l0q<>	Isopropyl alcohol	1.39	500	<loq< td=""></loq<>
0.69	3000	<l0q< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><loq< td=""></loq<></td></l0q<>	Methylene chloride	2.43	600	<loq< td=""></loq<>
2.08	5000	<loq< td=""><td>Propane</td><td>5.83</td><td>2100</td><td><loq< td=""></loq<></td></loq<>	Propane	5.83	2100	<loq< td=""></loq<>
2.92	890	<loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""></loq<></td></loq<>	Total Xylenes	2.92	2170	<loq< td=""></loq<>
0.49	80	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
	(ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08 2.92	(ppm) (ppm) 0.16 8 2.08 5000 0.02 2 0.04 60 1.11 5000 0.1 5 1.17 290 0.69 3000 2.08 5000 2.92 890	(ppm) (ppm) (ppm) 0.16 8 <loq< td=""> 2.08 5000 <loq< td=""> 0.02 2 <loq< td=""> 0.04 60 <loq< td=""> 1.11 5000 <loq< td=""> 0.1 5 <loq< td=""> 1.17 290 <loq< td=""> 0.69 3000 <loq< td=""> 2.08 5000 <loq< td=""> 2.92 890 <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) Analyte 0.16 8 <loq< td=""> 1,2-Dichloroethane 2.08 5000 <loq< td=""> Acetonitrile 0.02 2 <loq< td=""> Butanes 0.04 60 <loq< td=""> Ethanol 1.11 5000 <loq< td=""> Ethyl Ether 0.1 5 <loq< td=""> Heptane 1.17 290 <loq< td=""> Isopropyl alcohol 0.69 3000 <loq< td=""> Methylene chloride 2.08 5000 <loq< td=""> Propane 2.92 890 <loq< td=""> Total Xylenes</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 2.08 5000 <loq< td=""> Acetonitrile 1.17 0.02 2 <loq< td=""> Butanes 2.5 0.04 60 <loq< td=""> Ethanol 2.78 1.11 5000 <loq< td=""> Ethyl Ether 1.39 0.1 5 <loq< td=""> Heptane 1.39 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 0.69 3000 <loq< td=""> Methylene chloride 2.43 2.08 5000 <loq< td=""> Propane 5.83 2.92 890 <loq< td=""> Total Xylenes 2.92</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 5 2.08 5000 <loq< td=""> Acetonitrile 1.17 410 0.02 2 <loq< td=""> Butanes 2.5 2000 0.04 60 <loq< td=""> Ethanol 2.78 5000 1.11 5000 <loq< td=""> Ethyl Ether 1.39 5000 0.1 5 <loq< td=""> Heptane 1.39 5000 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 500 0.69 3000 <loq< td=""> Methylene chloride 2.43 600 2.08 5000 <loq< td=""> Propane 5.83 2100 2.92 890 <loq< td=""> Total Xylenes 2.92 2170</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>

Xueli Gao

Lab Director/Principal Scientist Aixia Sun

Ph.D., DABT

Lab Toxicologist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068 Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St. Brevard, NC 28712

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Sampling Date: 2023-01-02 **Lab Batch Date:** 2023-01-02 Completion Date: 2023-01-05 Initial Gross Weight: 37.764 g Net Weight: 35.264 g

Number of Units: 1 Net Weight per Unit: 5877.333 mg

Potency 10

Specimen Weight: 1516.490 mg

Tested SOP13.001 (LCUV)

Potency Summary

Total Active CBD **Total Active THC** None Detected 0.170% Total CBG Total CBN None Detected None Detected Other Cannabinoids **Total Cannabinoids** 9.990mg

Potency per Piece

Pieces For Panel: 6

Analyte	(1:n)	(%)	(%)	(mg/g)	(%)
Delta-9 THC	10.000	1.30E-5	0.0015	1.7000	0.1700
CBC	10.000	1.80E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBD	10.000	5.40E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBDA	10.000	1.00E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBDV	10.000	6.50E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBG	10.000	2.48E-4	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBGA	10.000	8.00E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBN	10.000	1.40E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
THCA-A	10.000	3.20E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
THCV	10.000	7.00E-6	0.0015	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>

Xueli Gao

Lab Toxicologist

Lab Director/Principal Scientist

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.877), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Detectal 0.817 + LPC + Total CBD + Total THC + Delta8-THC + Total CBD + Total CBD + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + Total CBD + Total THC + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + Delta8-THC + Total CBD + Total THC + Total CBD + Total THC + Total THC + Total CBD + Total THC + Total THC + Total CBD + Total THC + THC

DEA No. RA0571996 **FL License** # CMTL-0003 CLIA No. 10D1094068

Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St. Brevard, NC 28712

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp

Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Order # FRE221221-020001 Order Date: 2022-12-21 Sample # AADX128

Sampling Date: 2022-12-22 Lab Batch Date: 2022-12-22 Completion Date: 2022-12-26

Initial Gross Weight: 37.764~g Net Weight: 35.264~g

Number of Units: 1 Net Weight per Unit: 35264.000 mg

(2)

Microbiology (qPCR) Without Botanicals

Passed SOP13.017 (qPCR)

Specimen Weight: 508.400 mg

Dilution Factor: 1.000

Analyte	Action Level (cfu/g)	Result	Analyte	Action Level	Result
Total Aerobic	5000	Not Detected		(cfu/g)	
Count	0000	NOC DE LECCES	Total	1000	Not
Total Coliform	1000	Not Detected	Enterobacteriaceae		Detected
			Total Yeast/Mold	10000	Not
			TOTAL TEBSORISION	10000	Detected

Xueli Gao

Lab Toxicologist

Or

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.877), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV+ (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, Other Camabinoid is Total = Total Cannabinoid - All the listed cannabinoid is on the summary section, Total Detected Cannabinoid is Detacate + Delta 3 THC + Delta 3 THC + Delta 3 THC + Delta 3 THC + THC + Total CBC + Total CBD + Total THC + Delta 3 THC + Delta 3 THC + Delta 3 THC + TOTAL CBC + Total CBD + Total THC + Total CBC + Total CBDV + Delta 1 THC + CTAL CBC + TOTAL C

DEA No. RA0571996 FL License # CMTL-0003 **CLIA No.** 10D1094068

Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St.

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Brevard, NC 28712 Order # FRE221221-020001 Order Date: 2022-12-21 Sample # AADX128

Sampling Date: 2022-12-22 **Lab Batch Date:** 2022-12-22 **Completion Date:** 2022-12-26

Initial Gross Weight: 37.764 g Net Weight: 35.264 g

Number of Units: 1 Net Weight per Unit: 35264.000 mg

Pathogenic SE Microarray without Botanicals (25g)

Tested SOP13.019 (Microarray)

Specimen Weight: 1025.800 mg

Dilution Factor: 1.000

Result (cfu/g) Analyte Passed STEC E. Coli Salmonella

and Xueli Gao

Ph.D., DABT

Or Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THG-O-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Delta6a10a-THC + Delta8-THC+ Total CBN + CBT + Delta8-THCV + Total CBD + Total THCV+ CBL + Total THC + Total CBC + Total CBDV + Delta10-THC + Total THC-O-Acetate. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (mg/kg) = Milligram per Kilogram , *Measurement of Uncertainty = +/-10%

CERTIFICATE OF ANALYSIS PESTICIDES

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128

TESTED: 05/10/2022

Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOQ	LIMIT	AMOUNT	STATUS
	PPB	PPB	PPB	PPB	
Abamectin	20	40	70	<lod< th=""><th>Pass</th></lod<>	Pass
Azoxystrobin	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Bifenazate	10	20	20	<lod< th=""><th>Pass</th></lod<>	Pass
Etoxazole	5	10	10	<lod< th=""><th>Pass</th></lod<>	Pass
Imazalil	20	40	40	<lod< th=""><th>Pass</th></lod<>	Pass
Imidacloprid	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Malathion	20	40	50	<lod< th=""><th>Pass</th></lod<>	Pass
Myclobutanil	10	20	40	<lod< th=""><th>Pass</th></lod<>	Pass
Permethrin	5	10	40	<lod< th=""><th>Pass</th></lod<>	Pass
Spinosad	20	40	60	<lod< th=""><th>Pass</th></lod<>	Pass
Spiromesifen	15	30	30	<lod< th=""><th>Pass</th></lod<>	Pass
Spirotetramat	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Tebuconazole	5	10	10	<lod< th=""><th>Pass</th></lod<>	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-008 using Agilent 1260 HPLC and Agilent 6430 MS. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None.

Results Analyzed By: Trey Murschell, PhD Senior Chemist

Results Approved By: Luke Mason, MS Lab Director

HEAVY METALS

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128

TESTED: 05/10/2022

Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOŌ	LIMIT	AMOUNT	STATUS
	PPM	PPM	PPM	PPM	
Arsenic	0.015	0.03	0.2	<lod< th=""><th>Pass</th></lod<>	Pass
Cadmium	0.015	0.03	0.2	<lod< th=""><th>Pass</th></lod<>	Pass
Lead	0.015	0.03	0.5	<lod< th=""><th>Pass</th></lod<>	Pass
Mercury	0.015	0.03	0.1	<lod< th=""><th>Pass</th></lod<>	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-010 using Agilent 7800 ICP-MS. Limits are based on CO 1 CCR 212-3. Sample was analyzed as recieved. Deviations from SOP: None.

Results Approved By: Tyler Dorsey Associate Chemist

CERTIFICATE OF ANALYSIS RESIDUAL SOLVENTS

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128

TESTED: 05/10/2022

Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOQ	LIMIT	AMOUNT	STATUS
	PPM	PPM	PPM	PPM	
Acetone	77.014	154.028	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Benzene	0.4735	0.947	2	<lod< th=""><th>Pass</th></lod<>	Pass
Butanes	9.823	19.646	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Ethanol	77.505	155.010	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Ethyl-Acetate	49.116	98.232	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Heptanes	10.069	20.138	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Hexanes	4.833	9.666	60	<lod< th=""><th>Pass</th></lod<>	Pass
Isopropanol	77.21	154.420	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Methanol	194.499	388.998	600	<lod< th=""><th>Pass</th></lod<>	Pass
N-Pentane	9.234	18.468	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Propane	9.823	19.646	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Toluene	4.2435	8.487	180	<lod< th=""><th>Pass</th></lod<>	Pass
Xylenes	6.326	12.652	430	<lod< th=""><th>Pass</th></lod<>	Pass

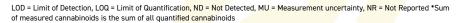
NOTES AND INTERPRETATIONS

Analyzed via AAM-002 using Agilent 7697/7890 Headspace GC FID. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None.

Results Approved By: Trey Murschell, PhD Senior Chemist

POTENCY

RECEIVED: 08/25/2022


French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128 Name: Type: ID: Batch ID:

METRC Tag:

pomegranate D9 Ingestible 220802223.18180 WIP074001 1A4000D00039211000002324 REPORTED: 08/29/2022

TESTED: 08/25/2022

ANALYTE	LOD	LOQ	MU	AMOUNT	AMOUNT	LABEL	STATUS
	%	%	mg/unit	%	mg/u <mark>nit</mark>	mg/unit	
THCa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
D9-THC	0.0010	0.002	0.173	0.173	1.73	-	TESTED
D8-THC	0.0010	0.002	0.010	0.007	0.1	-	TESTED
CBDa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBD	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBDVa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBDV	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBNa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBN	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBGa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBG	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBCa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
CBC	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
D9-THCVa	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>- /</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>- /</th><th>TESTED</th></lod<>	- /	TESTED
D9-THCV	0.0010	0.002	0.000	<lod< th=""><th><lod< th=""><th>-</th><th>TESTED</th></lod<></th></lod<>	<lod< th=""><th>-</th><th>TESTED</th></lod<>	-	TESTED
Sum	of Measured	d Cannabino	ids*	0.180	1.830		

Unit: 1 gram | Units Per Package:1

Analyte	Total*
Total THC	1.73 mg/unit
Total CBD	<lod< th=""></lod<>
Total CBG	<lod< th=""></lod<>
Total CBDV	<lod< th=""></lod<>
CBN	<lod< th=""></lod<>
THCV	<lod< th=""></lod<>
CBC	<lod< th=""></lod<>

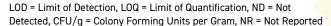
^{*}Total is the sum of the neutral (active) cannabinoid and the completely converted acidic cannabinoid

NOTES AND INTERPRETATIONS

Analyzed via AAM-001 using Agilent 1220 HPLC-DAD. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None. Delta-8 THC not included in total THC calculation.

Results Approved By: Luke Mason, MS Lab Director

MICROBIAL CONTAMINANT



RECEIVED: 08/25/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128 Name: Type: ID: Batch ID: METRC Tag: pomegranate D9 Ingestible 220802223.18180 WIP074001 1A4000D00039211000002324 REPORTED: 08/29/2022

TESTED: 08/25/2022

ANALYTE	LOQ	LIMIT	AMOUNT	STATUS
	CFU/g	CFU/g	CFU/g	
STEC	1	1	Absent	Pass
Salmonella	1	1	Absent	Pass
Aspergillus	1	1	Absent	Pass
Yeast & Mold	100	10000	ND	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-003 & AAM-007. Sample was analyzed as received. Deviations from SOP: None.

Results Analyzed By: Colleen Rafferty Associate Microbiologist

Results Approved By: Hector Caldera Supervisory Analyst

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St.

Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Brevard, NC 28712

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 **Lab Batch Date:** 2021-12-29 **Completion Date:** 2021-12-30

Initial Gross Weight: 48.972 g

Heavy Metals

Specimen Weight: 246.270 mg

Passed (ICP-MS)

Dilution Factor: 2.000

H

Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	
Arsenic (As)	100	1500	<l0q< th=""><th>Cadmium (Cd)</th><th>100</th><th>500</th><th><loq< th=""><th></th></loq<></th></l0q<>	Cadmium (Cd)	100	500	<loq< th=""><th></th></loq<>	
Lead (Pb)	100	500	<loq< th=""><th>Mercury (Hg)</th><th>100</th><th>3000</th><th><l0q< th=""><th></th></l0q<></th></loq<>	Mercury (Hg)	100	3000	<l0q< th=""><th></th></l0q<>	

Xueli Gao

Lab Director/Principal Scientist Aixia Sun

Ph.D., DABT

Lab Toxicologist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St. Brevard, NC 28712

Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 Lab Batch Date: 2021-12-29 Completion Date: 2021-12-30

Initial Gross Weight: 48.972 g

Passed (LCMS/GCMS)

Pesticides FL V4

Specimen Weight: 193.700 mg

Dilution Factor. 7.744							
Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)	Analyte	LOQ (ppb)	Action Level (ppb)	Result (ppb)
Abamectin	28.23	300	<loq< td=""><td>Acephate</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></loq<>	Acephate	30	3000	<l0q< td=""></l0q<>
Acequinocyl	48	2000	<loq< td=""><td>Acetamiprid</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Acetamiprid	30	3000	<loq< td=""></loq<>
Aldicarb	30	100	<loq< td=""><td>Azoxystrobin</td><td>10</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Azoxystrobin	10	3000	<loq< td=""></loq<>
Bifenazate	30	3000	<loq< td=""><td>Bifenthrin</td><td>30</td><td>500</td><td><loq< td=""></loq<></td></loq<>	Bifenthrin	30	500	<loq< td=""></loq<>
Boscalid	10	3000	<loq< td=""><td>Captan</td><td>30</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Captan	30	3000	<loq< td=""></loq<>
Carbaryl	10	500	<l0q< td=""><td>Carbofuran</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>	Carbofuran	10	100	<l0q< td=""></l0q<>
Chlorantraniliprole	10	3000	<l0q< td=""><td>Chlordane</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></l0q<>	Chlordane	10	100	<l0q< td=""></l0q<>
Chlorfenapyr	30	100	<l0q< td=""><td>Chlormequat Chloride</td><td>10</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Chlormequat Chloride	10	3000	<l0q< td=""></l0q<>
Chlorpyrifos	30	100	<l0q< td=""><td>Clofentezine</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></l0q<>	Clofentezine	30	500	<l0q< td=""></l0q<>
Coumaphos	48	100	<l0q< td=""><td>Cyfluthrin</td><td>30</td><td>1000</td><td><loq< td=""></loq<></td></l0q<>	Cyfluthrin	30	1000	<loq< td=""></loq<>
Cypermethrin	30	1000	<loq< td=""><td>Daminozide</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Daminozide	30	100	<loq< td=""></loq<>
Diazinon	30	200	<loq< td=""><td>Dichlorvos</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></loq<>	Dichlorvos	30	100	<loq< td=""></loq<>
Dimethoate	30	100	<loq< td=""><td>Dimethomorph</td><td>48</td><td>3000</td><td><loq< td=""></loq<></td></loq<>	Dimethomorph	48	3000	<loq< td=""></loq<>
Ethoprophos	30	100	<loq< td=""><td>Etofenprox</td><td>30</td><td>100</td><td><l0q< td=""></l0q<></td></loq<>	Etofenprox	30	100	<l0q< td=""></l0q<>
Etoxazole	30	1500	<l0q< td=""><td>Fenhexamid</td><td>10</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Fenhexamid	10	3000	<l0q< td=""></l0q<>
Fenoxycarb	30	100	<l0q< td=""><td>Fenpyroximate</td><td>30</td><td>2000</td><td><l0q< td=""></l0q<></td></l0q<>	Fenpyroximate	30	2000	<l0q< td=""></l0q<>
Fipronil	30	100	<loq< td=""><td>Flonicamid</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Flonicamid	30	2000	<loq< td=""></loq<>
Fludioxonil	48	3000	<l0q< td=""><td>Hexythiazox</td><td>30</td><td>2000</td><td><l0q< td=""></l0q<></td></l0q<>	Hexythiazox	30	2000	<l0q< td=""></l0q<>
Imazalil	30	100	<l0q< td=""><td>Imidacloprid</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Imidacloprid	30	3000	<l0q< td=""></l0q<>
Kresoxim Methyl	30	1000	<l0q< td=""><td>Malathion</td><td>30</td><td>2000</td><td><loq< td=""></loq<></td></l0q<>	Malathion	30	2000	<loq< td=""></loq<>
Metalaxyl	10	3000	<l0q< td=""><td>Methiocarb</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></l0q<>	Methiocarb	30	100	<loq< td=""></loq<>
Methomyl	30	100	<loq< td=""><td>methyl-Parathion</td><td>10</td><td>100</td><td><l0q< td=""></l0q<></td></loq<>	methyl-Parathion	10	100	<l0q< td=""></l0q<>
Mevinphos	10	100	<l0q< td=""><td>Myclobutanil</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Myclobutanil	30	3000	<l0q< td=""></l0q<>
Naled	30	500	<l0q< td=""><td>Oxamyl</td><td>30</td><td>500</td><td><l0q< td=""></l0q<></td></l0q<>	Oxamyl	30	500	<l0q< td=""></l0q<>
Paclobutrazol	30	100	<l0q< td=""><td>Pentachloronitrobenzene</td><td>10</td><td>200</td><td><l0q< td=""></l0q<></td></l0q<>	Pentachloronitrobenzene	10	200	<l0q< td=""></l0q<>
Permethrin	30	1000	<l0q< td=""><td>Phosmet</td><td>30</td><td>200</td><td><l0q< td=""></l0q<></td></l0q<>	Phosmet	30	200	<l0q< td=""></l0q<>
Piperonylbutoxide	30	3000	<l0q< td=""><td>Prallethrin</td><td>30</td><td>400</td><td><l0q< td=""></l0q<></td></l0q<>	Prallethrin	30	400	<l0q< td=""></l0q<>
Propiconazole	30	1000	<l0q< td=""><td>Propoxur</td><td>30</td><td>100</td><td><loq< td=""></loq<></td></l0q<>	Propoxur	30	100	<loq< td=""></loq<>
Pyrethrins	30	1000	<l0q< td=""><td>Pyridaben</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Pyridaben	30	3000	<l0q< td=""></l0q<>
Spinetoram	10	3000	<l0q< td=""><td>Spino sad</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Spino sad	30	3000	<l0q< td=""></l0q<>
Spiromesifen	30	3000	<l0q< td=""><td>Spirotetramat</td><td>30</td><td>3000</td><td><l0q< td=""></l0q<></td></l0q<>	Spirotetramat	30	3000	<l0q< td=""></l0q<>
Spiroxamine	30	100	<loq< td=""><td>Tebuconazole</td><td>30</td><td>1000</td><td><l0q< td=""></l0q<></td></loq<>	Tebuconazole	30	1000	<l0q< td=""></l0q<>
Thiacloprid	30	100	<loq< td=""><td>Thiamethoxam</td><td>30</td><td>1000</td><td><l0q< td=""></l0q<></td></loq<>	Thiamethoxam	30	1000	<l0q< td=""></l0q<>
Trifloxystrobin	30	3000	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				

Xueli Gao Ph.D., DABT Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

License No. 800025015 FL License # CMTL-0003 **CLIA No.** 10D1094068

D9 Distillate Sample Matrix: CBD/HEMP **Derivative Products** (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis

50 Commerce St. Brevard, NC 28712 Batch # HDE213359R Batch Date: 2021-12-28 Extracted From: Hemp Test Reg State: Florida

Production Facility: Cope Production Date: 2021-12-28

Order # FRE211228-040001 Order Date: 2021-12-28 Sample # AACH946

Sampling Date: 2021-12-29 Lab Batch Date: 2021-12-29 Completion Date: 2021-12-30

Initial Gross Weight: 48.972 g

Residual Solvents - FL (CBD)

Specimen Weight: 113.400 mg

Passed (GCMS)

LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
0.16	8	<l0q< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><loq< td=""></loq<></td></l0q<>	1,2-Dichloroethane	0.04	5	<loq< td=""></loq<>
2.08	5000	<loq< td=""><td>Acetonitrile</td><td>1.17</td><td>410</td><td><loq< td=""></loq<></td></loq<>	Acetonitrile	1.17	410	<loq< td=""></loq<>
0.02	2	<loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""></loq<></td></loq<>	Butanes	2.5	2000	<loq< td=""></loq<>
0.04	60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td>Passed</td></loq<>	Ethanol	2.78	5000	Passed
1.11	5000	<loq< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><loq< td=""></loq<></td></loq<>	Ethyl Ether	1.39	5000	<loq< td=""></loq<>
0.1	5	<l0q< td=""><td>Heptane</td><td>1.39</td><td>5000</td><td><loq< td=""></loq<></td></l0q<>	Heptane	1.39	5000	<loq< td=""></loq<>
1.17	290	<l0q< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""></loq<></td></l0q<>	Isopropyl alcohol	1.39	500	<loq< td=""></loq<>
0.69	3000	<l0q< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><loq< td=""></loq<></td></l0q<>	Methylene chloride	2.43	600	<loq< td=""></loq<>
2.08	5000	<loq< td=""><td>Propane</td><td>5.83</td><td>2100</td><td><loq< td=""></loq<></td></loq<>	Propane	5.83	2100	<loq< td=""></loq<>
2.92	890	<loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""></loq<></td></loq<>	Total Xylenes	2.92	2170	<loq< td=""></loq<>
0.49	80	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				
	(ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08 2.92	(ppm) (ppm) 0.16 8 2.08 5000 0.02 2 0.04 60 1.11 5000 0.1 5 1.17 290 0.69 3000 2.08 5000 2.92 890	(ppm) (ppm) (ppm) 0.16 8 <loq< td=""> 2.08 5000 <loq< td=""> 0.02 2 <loq< td=""> 0.04 60 <loq< td=""> 1.11 5000 <loq< td=""> 0.1 5 <loq< td=""> 1.17 290 <loq< td=""> 0.69 3000 <loq< td=""> 2.08 5000 <loq< td=""> 2.92 890 <loq< td=""></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) Analyte 0.16 8 <loq< td=""> 1,2-Dichloroethane 2.08 5000 <loq< td=""> Acetonitrile 0.02 2 <loq< td=""> Butanes 0.04 60 <loq< td=""> Ethanol 1.11 5000 <loq< td=""> Ethyl Ether 0.1 5 <loq< td=""> Heptane 1.17 290 <loq< td=""> Isopropyl alcohol 0.69 3000 <loq< td=""> Methylene chloride 2.08 5000 <loq< td=""> Propane 2.92 890 <loq< td=""> Total Xylenes</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 2.08 5000 <loq< td=""> Acetonitrile 1.17 0.02 2 <loq< td=""> Butanes 2.5 0.04 60 <loq< td=""> Ethanol 2.78 1.11 5000 <loq< td=""> Ethyl Ether 1.39 0.1 5 <loq< td=""> Heptane 1.39 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 0.69 3000 <loq< td=""> Methylene chloride 2.43 2.08 5000 <loq< td=""> Propane 5.83 2.92 890 <loq< td=""> Total Xylenes 2.92</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>	(ppm) (ppm) (ppm) Analyte (ppm) (ppm) 0.16 8 <loq< td=""> 1,2-Dichloroethane 0.04 5 2.08 5000 <loq< td=""> Acetonitrile 1.17 410 0.02 2 <loq< td=""> Butanes 2.5 2000 0.04 60 <loq< td=""> Ethanol 2.78 5000 1.11 5000 <loq< td=""> Ethyl Ether 1.39 5000 0.1 5 <loq< td=""> Heptane 1.39 5000 1.17 290 <loq< td=""> Isopropyl alcohol 1.39 500 0.69 3000 <loq< td=""> Methylene chloride 2.43 600 2.08 5000 <loq< td=""> Propane 5.83 2100 2.92 890 <loq< td=""> Total Xylenes 2.92 2170</loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<></loq<>

Xueli Gao

Lab Director/Principal Scientist Aixia Sun

Ph.D., DABT

Lab Toxicologist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), *Total THC = THCA-A * 0.877 + Delta 9 THC, *Total THCV = THCV + (THCVA * 0.87), *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Total CBC = CBC + (CBCA * 0.877), *Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, *Total Detected Cannabinoids = Delta8 THC + Total CBN + CBT + Delta8-THCV + Total CBO + Total THCV + CBL + Total THC + Total CBC + Total CBV + Delta10-THC, *Total THC-O-Acetate = Delta 8 THC-O-Acetate + THC-O-Acetate, *Analyte Details above show the Dry Weight Concentrations unless specified as 12 % moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (μg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (μg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

DEA No. RA0571996 FL License # CMTL-0003 CLIA No. 10D1094068 Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St. Brevard, NC 28712

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Sampling Date: 2023-01-02 **Lab Batch Date:** 2023-01-02 Completion Date: 2023-01-05 Initial Gross Weight: 37.764 g Net Weight: 35.264 g

Number of Units: 1 Net Weight per Unit: 5877.333 mg

Potency 10

Specimen Weight: 1516.490 mg

Tested SOP13.001 (LCUV)

Potency Summary

Total Active CBD **Total Active THC** None Detected 0.170% Total CBG Total CBN None Detected None Detected Other Cannabinoids **Total Cannabinoids** 9.990mg

Potency per Piece

Pieces For Panel: 6

Analyte	(1:n)	(%)	(%)	(mg/g)	(%)
Delta-9 THC	10.000	1.30E-5	0.0015	1.7000	0.1700
CBC	10.000	1.80E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBD	10.000	5.40E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBDA	10.000	1.00E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBDV	10.000	6.50E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBG	10.000	2.48E-4	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
CBGA	10.000	8.00E-5	0.0015	<loq< td=""><td><l0q< td=""></l0q<></td></loq<>	<l0q< td=""></l0q<>
CBN	10.000	1.40E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
THCA-A	10.000	3.20E-5	0.0015	<l0q< td=""><td><loq< td=""></loq<></td></l0q<>	<loq< td=""></loq<>
THCV	10.000	7.00E-6	0.0015	<l0q< td=""><td><l0q< td=""></l0q<></td></l0q<>	<l0q< td=""></l0q<>

Xueli Gao

Lab Toxicologist

Lab Director/Principal Scientist

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.877), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Detectal 0.817 + LPC + Total CBD + Total THC + Delta8-THC + Total CBD + Total CBD + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + Total CBD + Total THC + Total THC + CBD + CBT + Delta8-THCV + Total CBD + Total THC + Delta8-THC + Total CBD + Total THC + Total CBD + Total THC + Total THC + Total CBD + Total THC + Total THC + Total CBD + Total THC + THC

DEA No. RA0571996 **FL License** # CMTL-0003 CLIA No. 10D1094068

Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St. Brevard, NC 28712

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp

Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Order # FRE221221-020001 Order Date: 2022-12-21 Sample # AADX128

Sampling Date: 2022-12-22 Lab Batch Date: 2022-12-22 Completion Date: 2022-12-26

Initial Gross Weight: 37.764~g Net Weight: 35.264~g

Number of Units: 1 Net Weight per Unit: 35264.000 mg

(2)

Microbiology (qPCR) Without Botanicals

Passed SOP13.017 (qPCR)

Specimen Weight: 508.400 mg

Dilution Factor: 1.000

Analyte	Action Level (cfu/g)	Result	Analyte	Action Level	Result	
Total Aerobic	5000	N D d		(cfu/g)		
Count	0000	Not Detected	Total	1000	Not	
Total Coliform	1000	Not Detected	Enterobacteriaceae	1000	Detected	
			Total Yeast/Mold	10000	Not	
			Total Teast/Mold	10000	Detected	

Xueli Gao

Lab Toxicologist

Or

Lab Director/Principal Scientist

Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.877), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV+ (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THC-O-Acetate + Delta 9 THC-O-Acetate, Other Camabinoid is Total = Total Cannabinoid - All the listed cannabinoid is on the summary section, Total Detected Cannabinoid is Detacate + Delta 3 THC + Delta 3 THC + Delta 3 THC + Delta 3 THC + THC + Total CBC + Total CBD + Total THC + Delta 3 THC + Delta 3 THC + Delta 3 THC + TOTAL CBC + Total CBD + Total THC + Total CBC + Total CBDV + Delta 1 THC + CTAL CBC + TOTAL C

DEA No. RA0571996 FL License # CMTL-0003 **CLIA No.** 10D1094068

Pomegranate D9 Sample Matrix: CBD/HEMP Edibles (Ingestion)

Certificate of Analysis

Compliance Test

French Broad Cannabis 50 Commerce St.

Batch # WIP074002 Batch Date: 2022-12-21 Extracted From: Hemp Test Reg State: Florida

Production Facility: FBC Production Date: 2022-12-21

Brevard, NC 28712 Order # FRE221221-020001 Order Date: 2022-12-21 Sample # AADX128

Sampling Date: 2022-12-22 **Lab Batch Date:** 2022-12-22 **Completion Date:** 2022-12-26

Initial Gross Weight: 37.764 g Net Weight: 35.264 g

Number of Units: 1 Net Weight per Unit: 35264.000 mg

Pathogenic SE Microarray without Botanicals (25g)

Tested SOP13.019 (Microarray)

Specimen Weight: 1025.800 mg

Dilution Factor: 1.000

Result (cfu/g) Analyte Passed STEC E. Coli Salmonella

and Xueli Gao

Ph.D., DABT

Or Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun

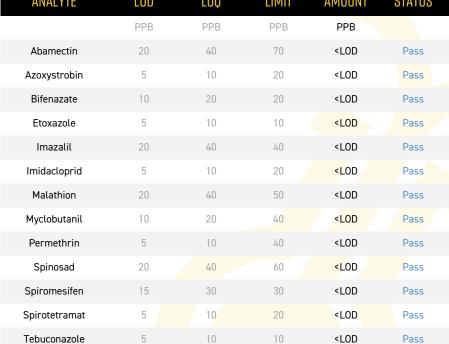
D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: Total Active CBD = CBD + (CBD-A * 0.877), *Total CBDV = CBDV + (CBDVA * 0.87), Total Active THC = THCA-A * 0.877 + Delta 9 THC, Total THCV = THCV + (THCVA * 0.87), CBG Total = (CBGA * 0.877) + CBG, CBN Total = (CBNA * 0.877) + CBN, Total CBC = CBC + (CBCA * 0.877), Total THC-O-Acetate = Delta 8 THG-O-Acetate + Delta 9 THC-O-Acetate, Other Cannabinoids Total = Total Cannabinoids - All the listed cannabinoids on the summary section, Total Detected Cannabinoids = Delta6a10a-THC + Delta8-THC+ Total CBN + CBT + Delta8-THCV + Total CBD + Total THCV+ CBL + Total THC + Total CBC + Total CBDV + Delta10-THC + Total THC-O-Acetate. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (mg/kg) = Milligram per Kilogram , *Measurement of Uncertainty = +/-10%

CERTIFICATE OF ANALYSIS PESTICIDES

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128


TESTED: 05/10/2022

Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOQ	LIMIT	AMOUNT	STATUS
	PPB	PPB	PPB	PPB	
Abamectin	20	40	70	<lod< th=""><th>Pass</th></lod<>	Pass
Azoxystrobin	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Bifenazate	10	20	20	<lod< th=""><th>Pass</th></lod<>	Pass
Etoxazole	5	10	10	<lod< th=""><th>Pass</th></lod<>	Pass
Imazalil	20	40	40	<lod< th=""><th>Pass</th></lod<>	Pass
Imidacloprid	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Malathion	20	40	50	<lod< th=""><th>Pass</th></lod<>	Pass
Myclobutanil	10	20	40	<lod< th=""><th>Pass</th></lod<>	Pass
Permethrin	5	10	40	<lod< th=""><th>Pass</th></lod<>	Pass
Spinosad	20	40	60	<lod< th=""><th>Pass</th></lod<>	Pass
Spiromesifen	15	30	30	<lod< th=""><th>Pass</th></lod<>	Pass
Spirotetramat	5	10	20	<lod< th=""><th>Pass</th></lod<>	Pass
Tebuconazole	5	10	10	<lod< th=""><th>Pass</th></lod<>	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-008 using Agilent 1260 HPLC and Agilent 6430 MS. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None.

LOD = Limit of Detection, LOQ = Limit of Quantification, ND = Not Detected, NR = Not Reported

Results Analyzed By: Trey Murschell, PhD Senior Chemist

Results Approved By: Luke Mason, MS Lab Director

HEAVY METALS

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128

TESTED: 05/10/2022

Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOŌ	LIMIT	AMOUNT	STATUS
	PPM	PPM	PPM	PPM	
Arsenic	0.015	0.03	0.2	<lod< th=""><th>Pass</th></lod<>	Pass
Cadmium	0.015	0.03	0.2	<lod< th=""><th>Pass</th></lod<>	Pass
Lead	0.015	0.03	0.5	<lod< th=""><th>Pass</th></lod<>	Pass
Mercury	0.015	0.03	0.1	<lod< th=""><th>Pass</th></lod<>	Pass

NOTES AND INTERPRETATIONS

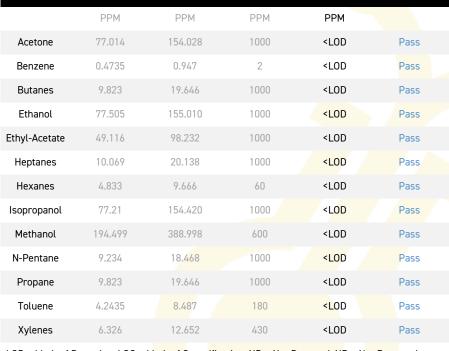
Analyzed via AAM-010 using Agilent 7800 ICP-MS. Limits are based on CO 1 CCR 212-3. Sample was analyzed as recieved. Deviations from SOP: None.

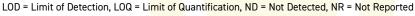
Results Approved By: Tyler Dorsey Associate Chemist

CERTIFICATE OF ANALYSIS RESIDUAL SOLVENTS

RECEIVED: 05/10/2022

French Broad Cannabis 19 N Caldwell St Brevard, Colorado 28712 (828) 708-2225 403H-80533.128


TESTED: 05/10/2022


Name: Type: ID: Batch ID: METRC Tag:

D9 Distillate Concentrates & Extracts 220501246.14365 HDE221169R 1A4000D00039211000001950

REPORTED: 05/13/2022

ANALYTE	LOD	LOQ	LIMIT	AMOUNT	STATUS
	PPM	PPM	PPM	PPM	
Acetone	77.014	154.028	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Benzene	0.4735	0.947	2	<lod< th=""><th>Pass</th></lod<>	Pass
Butanes	9.823	19.646	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Ethanol	77.505	155.010	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Ethyl-Acetate	49.116	98.232	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Heptanes	10.069	20.138	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Hexanes	4.833	9.666	60	<lod< th=""><th>Pass</th></lod<>	Pass
Isopropanol	77.21	154.420	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Methanol	194.499	388.998	600	<lod< th=""><th>Pass</th></lod<>	Pass
N-Pentane	9.234	18.468	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Propane	9.823	19.646	1000	<lod< th=""><th>Pass</th></lod<>	Pass
Toluene	4.2435	8.487	180	<lod< th=""><th>Pass</th></lod<>	Pass
Xvlenes	6.326	12 652	430	<1.00	Pass

NOTES AND INTERPRETATIONS

Analyzed via AAM-002 using Agilent 7697/7890 Headspace GC FID. Limits are based on CO 1 CCR 212-3. Sample was analyzed as received. Deviations from SOP: None.

Results Approved By: Trey Murschell, PhD Senior Chemist

